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1. INTRODUCTION

The quest to achieve higher projectile velocities is currently of worldwide interest among the
ballistics community. While terminal ballisticians debate the relative merits of velocity and mass o
target, the interior ballisticians continue to pursue both conventional and novel approaches to
providing launch velocities of 2.5 km/s and greater. A considerable investment is being made to
develop practical etectric gur:s, including electrothermal-chemical and electromagnetic launchers
of various types. Large light gas guns and even inbore ramjet propulsion are being considered for
providing very high launch velocities. However, conventional chemical propulsion appears to offer
" a limited but certainly achievable capability in this area. Current efforts at the Ballistic Research
Laboratory include a modest study of salid propellant hypervelocity guns, aimed at providing a
detailed understanding of the hydrodynamics of this environment as well as baseline data on the
performance availabie from a conventional approach. Such a launcher may or may not offer a
practical capability for tactical or strategic applications, but may indeed offer a readily available
laboratory device for facilitating large-scale teiminal ballistics studies at very high velocities, as well
as serving as a basis of comparison to measure the progress of the more novel propulsion
approaches.

The most direct methods for increasing projectile velogity in a solid propellant gun are to
decrease the projectile mass, increase the length of the weapon, increase the maximum chamber
pressure, and increase the energy in the propulsion charge. Any or all of these techniques may be
used to produce a hypeivelucity launch system. In parallel to the quest for higher velogities is the
developimant of techiques to accurately model the performance of these guns. Most modem
interior ballistic computer codes perform very well through the inventory of fielded ammunition, but
when the ratio of the propulsion charge mass to the projectiie mass (Charge to Mass ratio or C/M)
exceeds ona (1)(the value approached by most modemkinetic energy ammunitiun), the mechanism
fortranster of energy trom the buming propetlant to the base of the pro-ectile ceases to be as simple
as assumed by most codes {Robbins 1986).

2. EXPERIMENTAL

2.1 Gun Hardwam. At BRL. seven-inch smoothbore gun sysien.s onginally modified tor use
in the High Altitude Research Program (HARP) are frequently used to act  erale large masses {0
cuirent ordrance velociiies, of light masses to the hypervelocity regime (Bull and Murphy 1988;
Evans 13686, Boyer and MacAllister 1966). These guns fealure projectie traveis ol up to 15.25 m
(600 in). maximum chamber pressures ol 483 MPa (70 kpsi) and chamber volumes of 0.037 m>
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Seven-Inch HARP Gun at BRL's Range 18

ire 1.

(2271 ing) or mure. For our tests a gun of this type was mountad in a M174 recoil on a M1 towed
howitzer mount. The tube was supponed just forward of the joint by a rigid mount equipped witt:
rollers (see Figures 1 and 2). This prevented excessive tube droop and restricted tube whip d--ing
the gun firing without interfering with the recoil cycle. New inspection criteria for this series . Jun
condemned this tube (SN 1098) and breech soon after these experimental firings were con picled.
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“Figure 27 Seven-ineh HARP Gun Diagram (SN 1088) T
2.2 Instumeptation The gun was instrumented with ten (10) piezoeleciric pressure

transducers (Kistler Model 6211) at nine (9} dilerent axial tocations along the tube. Transduscer
locations are identitied in Figure 2. The transducer mounting holes were rachined direcly into the
tube wall. Twa microwave interferomelars (15 GHz § 10.525 GHz) were ulilized to record the molion
of the projeciile while in the gun tube. Two 35-mm smear camaras were used 1o racord projectite
veloaty and integaty alter muzzle exil. Hioh speed lilm cameras and s!langdard video cameras wre
ulitized to record vanous portions of each firing.

2.3 Propeling Charge The high ratio of chamber tengih 1o chamber diameter in this gun
system made the design of the ignition system catical to safe operation Pravious finngs of this
weapon at C/M's of up to one (1) utitized an artitery type black powder and nitrocetiutcs. “snake®
running up the center of the charge to transmd the :gmition puise to the propsiiant bed undormly.
Experience with 120-mm hypenelocily gun systems ing:caled that it would be simpler and safer to
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utilize partially cut stick propellant technology (Ruth and Horst 1991; Ruth, Robbins, and Horst
1991). The multiperforated propellant sticks have nearly the same progressivity as multi-perforated
granular propellants, but since the sticks present natural flow channels to the igniter gasses, it is
safe to ignite this very long charge with just a breech mounted ignitloﬁ system. The charge
configuration for round one is shown in Figure 3. It consisted of an M52 electric igniter, an M82
percussion primer, a 209 g (0.461 Ib) class 1 black powder basepad, and 31.8 kg (70.1 Ib) of JA2
stick propellant. Round twe utilized 30.4kg (67.01b) of the JA2 stick propeliant. The JA2 was divided
up into three bundies. Details of the charge configurations are présented in Table i. XNOVAKTC,
an interior ballistic computer code described later in the paper, was utilized to determine which of
the iots of JAZ2 stick propellant an hand would yield the highest muzzle velocity with a maximum
pressure of 448MPa (65 kpsi). '

Table 1. Charge Component Data.

—
ROUND | PROPELLANT | MASSOF | MASSOF | MASS OF TOTAL BASE
NUMBER TYPE BUNDLE 1 | BUNDLE2 | BUNDLE3 | CHARGE | PAD
MASS MASS

1 JA2.19 pert, par-| 12.864kg | 12873kg | 6.061kg | 31.798kg | 209 g
— t'aiy-cut cylindri-
2 cal stick 14.462kg | 14.378kg 1.584 kg | 30.424 kg

- —

2.4 Projectiles Figure 4 shows a ciagram of the 4.987 kg (10.994 Ib) slug projectile utilized
tor the first tiring. Polypropolux, a high strength, low cost plastic, was chosen as the base material
for this projeciile because of successtul test finngs in a 120-mm hypervelacity system. Since the
measurcment of projectile velocity was a critical part of the program, the projectile had (o have a
material capahle ¢f reflecting microwave energy on its front face. This requirement was satisfied
with a 0.003175 m (0.125 in) thick aluminum plate attached to the tront of the projectile. This
projectile survived launch, but analysis of radar data led us to believe that obturation was los! early
in the tiring
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Figure 4. Projectile for Round One. 4987kg. | Figure 5. Projectilo for Round Two, 4.988kg.

- Figure 5 is a diagram of the 4.988 kg (10.996 Ib) projectile design used for the second round.
The forward and rear diameters are the same as the round one projectile, but the interference fit
section atthe rearof the projectile presents aiarger obturating surface. The rearface of the projectile
was reinforced with a .00635 m (0.25 in) thick aluminum plate to provide greater protection from
the propelling gasses. To maintain the same projectile mass and allow for the much wider obturator
band and the additional aluminurn plate, the length of the projectile was reduced. Other changes
resulting from the change in projeciile design are highlighted in the description of the gun firings.

- 3. G- FTINGS

3.1 Round Ong  Tomaintain similitude with previously completed computer simulations, the
projectile needed to be seated 1.473 m (58.0 in) from the rear face of the tube (1.397 m (55.0 in)
from the forward face of the spindle). The projectile was inserted into the chamber by hand then
forced into position using a hydraulic jack. Since this system did not allow precise cuntrol of the
projectile motion, the projectile was finally seated at a position 1.492 m (58.75 in) from the rear
face of the tube. The calculations presented in this paper were performed after ihe firings and reflect
the true experimental seating distance. Table 2 summarizes the gun parameters for both rounds.
Before loading the propulsion charge the chamber was swabbed with Keivan, a water based jelling
agent traditionally used as a thickenar in the food industry, which was intended to provide a cooling
layer to reduce chamber erosion due to the hot burning JA2 propellan®. Figure 6 shows the pressire
time histories for round one.




Table 2. Gun Firing & Simulation Data.
ROUND ‘ICHARGE PROJECTILE | C/M | CHAMBER | P1 P2 | P3 | P4 | MUZZLE
NUMBER | MASS | MASS (kg) VOLUME [(MAX)|(MAX){(MAX)| (MAXYVELOCITY
(k) m3)  |(MPa)|(MPa)| (MPa)|(MPa)| (vs)
1 31.798 4,987 6.38 | 0.04962 428 | 362 | 306 | 297 ---
1-XKTC | 31.798 4,987 6.38 | 0.04962 | 418 | 376 | 324 | 320 2815
2 30.424 4.988 6.1 0.04382 | 432 | 365 {316 | --- 2818
2-XKTC | 30.424 4.988 6.1 0.04382 43 | - | 304 | --- 2880
o A —BREECH |
-0—-0,946m
- -0-1,270m
, --2.159m
- ™ -3, 480m |
o —
g L S.004m
L)
7 m
& /
& |
199 |
!
Y 0.5 TThNes . vee
TIME (s)
Figure 8. Round 1, Experimental Prassure Data. T

3.2 Round Twa Anincrease in the force required to seat the projectile, due to the projectils
cesign changes made prior to round two, limited the seating distance to 1.295 m (51 in). This
significantly decreased the chamber volume and required a reduction in the propulsion charge
mass. Befere the propulsion charge was loaded for round two the gun tube was purged with helium
and sealed with a plastic diaphragm. It was hoped that this procedu +: would have two positive
effects. The first was to reduce the resistive force encountered by the projectile by decreasing the
density of the gas in the tube. Interior baltistic simulations show that a helium filled tube yields a
significant increase in muzzle velocity. The greatest benefit would have been gained by evacuating
the tube, but the difference between helium and vacuum is not that large, and the experimental
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technique for evacuating the tube is much more cumbersome than a simple gas purge. The other
beneiit of the helium purge was to eliminate any reactive gasses from in front of the projectiie. Then
if obtur-tion failed, the fuel rich gasses would not encounter an oxidizer rich atmosphere. This
technique reduces the eftect of blow-by on inbore radar signals. Figure 7 shows the pressure time
history for round two and Figure 8 shows the watertall plot (velocity spectrum at discrete time steps
described in the interferometry section).

3.3 Comparison  Even though there were slight differences in charge mass and chamber
volume (as detailed in Tables 1 and 2), the peak chamber pressures were virtually identical for both
rounds. Despite the length of the charge and the simple base ignition system, pressure wave levels
were minimal throughout the interior ballistic cycle. This is credited to the low axial gas flow
resistance of the stick charge.

3.4 |nstrumentation Performance

3.4.1 Pressure. All of the pressure transducers in the gun chamber appeared to perform well
during the first firing. The downbuore gages (beyond P4) only worked for a short time. This was
believed to be caused by a flexural resonance phenomenon which causes high frequency, high
amplitude radial strain waves in relatively thin tube walls during the passage of a hypervelocity
projectile (Simkins 1987). Efforts are currently underway to attempt to isolate the transducers from
this effect. During the second firing most of the chamber transducers functioned properly, but the
performance of downbore gages was :narginal at best. it should be noted that P3 was exposed to
the initial chamber pressurization for round one; howevar, because cf changes in the projectile for
the second round, the projectile was not seated as far into the gun, and covered P3 until after the
projectile moved 0.05 m (1.97 in).

3.4.2 interferometry. On the first round the inbore 15 GHz radar signal attenuated after just a
few centimelers of projectile travel. The 10.525 GHz radar, used in the downrange mode during the
first round, failed to track any signal due to masking by the enormous cloud of ionized gas which
followed the projectite out of the muzzle. On the second round the 15 GHz signal once again
disappeared soon afier the onset of projectile motion. For this round the 10.525 GHz radar was
used in the inbore moda, and transmilted signal throughout the interior ballistic cycle. Figure 8 was
generated by performing Fas! Fourier Transforms (FFT's) on the raw interferometer data at
one-millisecond intervals. No attempt was made to generate a velogity-time history from the
interferometer data.




3.4.3 Cameras. All framing, video and smear cameras performed well during these firings.
4. MODELING

4.1 Background. Previous efforts to model large-caliber hypervelocity firings in a 120-mm
gun (Ruth and Horst 1991; Ruth, Robbins, and Horst 1991) underscored the necessity of employing
a two-phase flow interior ballistic code to simulate the hydrodynamics (particularly the pressure
gradient) associated with the very high charge-to-mass ratios employed. Lumped-parameter codes
continue to be uselul, even at hypervelocities, for defining overall performance potential for a given
gun envelope; however, limitations in the physics of the codes (again, primarly the simplified
pressure gradient) typically require compromises in the input data to provide a match to observed
peak pressures and velocities, leading to significant disparities in details of the inbore trajectory
between theory and experiment.

in an attempt to model the 7-inch HARP firings conducted in this study, calculations were
performed using the XKTC interior ballistic code (Gough 1990). XKTC is then latest version in a
successful series of improvements to the NOVA code (Gough 1980), embodying the features of
codes known as XNOVA (more efficient computational techniques), NOVATC (traveling charge
option), XNOVAK (finite rate chemistry), and XNOVAT (numerous features for tank ammunition,
including case combustion and projectile afterbody intrusion).

The basis for the NOVA tamily is a one-dimensional (with area change), two-phase, unsteady
flow representation of the interior ballistic cycle. The balance equations describe the evolution of
magcroscopic flow properties accompanying changes in mass, momentum, and energy arising out
of interactions associated with combustion, interphase drag, and heat transfer. The state variables
are to be thought of as averages of local microproperties, with intractable details of the microfiow
re'ated to the macroscopic variables by means of empirical correlations. Functioning of the igniter
is specified as a predetermined mass injection rate as a function of space and time. Flamespread
then follows from axial convection, with the propeliant responding as an inert material until a surtace
tempeiature ignition criterion is met; regression then ensues based on a conventional aP" buming
rate law, unlass the finite rate chemistry option is invoked (not used in this study). The goveming
equations are solved by the method of finite ditferences with an explicit allowance for discontinuities
in the state vanables at internal boundaries deiined by the ends of the propeliant increments.




4.2 Round One. Priorto the actual firings, a nominal XKTC input data base (see Appendix)
was assembled based on the physical dimensions and properties of the system components, an
assumed projectile seating distance, and other data (e.g., propellant buming rate, bore resistance
profile) developed for and modified from previous hypervelocity firings (Robbins, Ruth, and Horst,
not yet published). Simulations were performed using these data to identify the best available
propellant lot and to estimate a charge weight that would provide maximum performance at a peak
chamber pressure at about 414 MPa (60 kpsl), a recommended safe limit for our tube.

After the first firing, the data base was altered to reflect actual component masses and loading
data {e.g., projectile seating distance). The first simulation performed using these data provided
an adequate match to overall performance data (e.g., peak chamber pressure) but a somewhat
disappointing representation of details of the pressure-time curves as well as the times at which
the projectile passed the downbore pressure gages.

One of the essential features of a multiphase flow interior ballistic code is treatment of
interactions between the solid and gas phases, such as the interphase drag. This drag force is
usualiv calculated in such codes by reference to empirically based correlations for fixed andfluidized
beds of particles of approximately the correct shape at appropriate Reynolds numbers. For the
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Figure 10. Bound 1. Calculated Base Pressure Data.

partially cut stick propellant employed in the subject firings, while itis clear that the propellantinitially
ofters the geometric characteristics of a bundle of stick propellant and later transforms to a {largely
fluidized) bed of what is essentially granular propellant, the timing of this event is unknown. The
XKTC code makes the assumption that this transformation begins to occur when motion of the
projectile has provided sufficient additional chamber volume for the separated propellant pieces to
rotate. Owing to the limitations and uncertainties of this assumption, additional simulations were
performed varying the time period over which this transition occurs.

The final parameters selected (also listed in the Appendix) resulted in the pressure-time curves
shown in Figure 9, providing a good match to the shape of the experimental curves and the times
at which the projectile passed the first three downbore pressure gages, with the predicled pressure
within 10 MPa of the measured value. No veiification oi the predicted muzzie velocily was possible
as this measurement lailed.

Figure 10 displays a simulated projectile base pressure-time curve, atong with values for the
maximum pressures recorded by the first three downbore gages. We note that while good
agreement is seen for the first two locations, the measured value for the third falls far below the
simuated base pressure at that position. Given the damage to downbore gages beyond the third

10




position (possibly from tube flexural resonance), data recorded at this third position was also
considered suspect. A quick check on the plausibility of these data was performed by constructing
a simple model of the base pressure curve based on the early portion of the calculated curve
“spliced” to experimental data from all three downbore gages. A comparison of predicted velocities
based on this crude model and the XKTC simulation itself (which provided a good fit to the
experimental pressures measured at the first two downbore gages but not the third) revealed a
difference of some 600 m/s, the profile including the data from the third downbore gage predicting
a velodity a velocity of 2479 mvs, far below both theory and experiment as presented in Table 2. It
was thus concluded that the experimental pressure measured by the third downbore gage should
be discounted.

4.3 Raund Two.As mentioned in an earier section of this repor, changes were introduced in
the configuration of the projectile for the second firing, and an XKTC calculation was performed
reflecting these changes to select a charge mass for the test. The input data are again recorded
in the Appendix, and the pressure-time curves resulting from the simulation are presentedin Figure
11. The simulation, however, assumed pure helium in the tube ahead of the projectile, a situation
that was not likely at the time of the firing, and did not fully account for the influence of the change
in projectile configuration on the bore resistance. These factors likely account for some disparity

L
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Figure 11. Round 2. Calculaled Pressure Data.
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between the .rediction and the measured valuas (which this time includes a successful measure-
ment of the projectile velocity), as presented in Table 2. Further, the quality of virtually all recorded
downbore pressure curves precluded their use as anything but event markers in evaluating the
accuracy of the simulation.

5. CONCLUSIONS

Significant masses can be propelled to velocities in excess of 2.5 krmvs utilizing & conventional
mode of solid propulsion. While the high charge to mass ratio leads to significant pressure giadients
uitimately limiting achievable velocities (Heiser 1980), firings conducted under this progiam verify
the practicality of such launchers for use in laboratory applications an« perhaps ev 2n suggest the
potential for certain weapon applications as well. Further, the XKTC muiltiphase flow interior ballistic
code appears to offer a useful capability for charge design for such launchers.
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APPENDIX

INPUT FOR XKTC SIMULATION OF 7-INCH HARP GUN FIRINGS
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ROUND ONE, PRELIMINARY SIMULATION

175 MM MOD GUN 1098 HARP

TIFFTTT

86 -3 03500
100 6040 00001 20 0.05 0.0t 0.0001 0.0001
1000 100 1100 100 1500 100

8 965 00120008020

166 00 1

529. 147 2889 14

529.0

JA2 19PF LOT 792-391.0 56575 70.4 .05763
9 587 0036 15 19 1
A 001 80 70 10 1.0

40000. 1.0 41754, 5

6000. 0010154 .8608 100000. .0C048009 9469 0.0  800.
0277 0001345 .6
20372433, 24.8226 1.2268 26.98

$367547. 30.93
0. 008 .012
00 99 100
00 00 00
7. 75, 00
00. 00. 00
0. 0. 00
0. 0. 00
0. 0. 0.
0. 0. 0.
00 00 00
00 00 00
00 4240 412
88.6 3.655
615.  300.
14 14.7  §50.
005 043 10

1221 23.00

016 05 0510 052 .0525.0725

120 121 243
00 00 00
00 Q@0 00
09 00 Q0
0.0 0. 0.
0.0 0. 0.

0. 0. o
0. 0. 0.
00 Q00 00
00 00 00

4240 4815 3806 8500 379

11465 365 120. 365 6591 365
00 200. 28 300. 33 1000. 45. 300

289
t.25

777 00228 75575 10934 440 0.000

00 37

50.

85. 137. 197. 65425 50
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ROUND ONE, FINAL SIMULATION

175 MM }MOD GUN 1008 HARP
C TTFFTTT 160G 00 1

56 -3 03500
'10.0. 604.00 0.0001 20 005 001 00001 0.0001
1000 100 1100 100 1500 100

8 965003200080000
529. 147 28.806 1.4

529.0

JA2 19PF LOT 792-391.0 22.0 28.362 .05763
-9 587 0.056 15 19 1
A 00 100 90 20 1.0

40000. 1.0 41754 5

6000. * .0010459 .8608 100000. .00049449 8469 0.0  800.
0277 .0001345 .6

20372433. 24.8226 1.2268 26.98

JA2 19PF LOT 792-3922.0 43.0 28.380 .05763

-9 587 0036 15 19 : 1
A 001 80 60 20 20
40000. 1.0 41754 5

6000. .0010459 .8608 100000. .00049448.9469 0.0 800
0277 0001345 .6

20372433.24.8226 1.2268 26.98

JA2 19PF LOT 792-39430 55.75 13.361 05763

-9 587 0036 15 19 &« - 1,

4 001 70 50 20 20
40000. 1.0 41754, 5 ‘
6000. .0010459 .8608 100000. .00049449 5469 0.0 800
0277 0001345 .6

20372433, 24.8226 1.2268 26.98

9967547. 30.93 1.221 23.00

0. .08 .012 .015 .05 .0510 .052 .0525.0725
00 99 1.00 120 121 213

00 00 00 00 00 00

75. 75, 00 00 00 00

0. 00. 00 00 00 00

0. 0. 00 00 O O

G. 0. 00 00 O O

0. oo 0 0 0 o

0. 0. 0 0 0 O

00 00 00 00 00 00

00 00 00 00 00 00

00 4240 412 4240 49.15 3.806 85.00 2.79
88.6 3655 11465 3.65 120. 365 6591 3.65
00 500. 28 500. 38  3000. 45  500.

615.  500.

14 147 550. 289

01 043 10 125

777 00228 7

55.75 10.994 44.0  0.000

00 37, 50. 85 137. 197. 65425 50.
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ROUND TWO, PRELIMINARY SIMULATION

176 MM MOD GUN 1098 HARP
TTFFTIT 160 00 1

56 -3 03500

10.0 611.0 00001 20 0.05 0.01 00001 0.0001
1000 100 1100 100 1500 100

8 96 5003200080000
529. 147 28.896 1.4

529.0

JA2 19PF LOT 792-391.0 225 31.884 .05763
-9 5687 0.03 15 18 i

A 00 100 80 20 290

40000. 1.0 41754 5

6000. .0010459 .8608 100000. .00049449 9469 0.0  800.
0277 .0001345 .6

20372433. 24.8226 1.2268 26.98

JAZ2 19PF LOT 792-3322.5 44.0 31.698 .05763

-9 587 003 15 19 i
A 001 80 60 20 20
40000. 1.0 41754 5

6000. .0010459 .8608 100000. .00049449 .9469 0.0 800.

0277 .0001345 .6

20372433. 24.8226 1.2268 26.98
JA2 19PF LOT 792-3944.0 48.00 3492 .05763

-9 587 0036 15 19 1
A 0ot 70 680 20 20
40000. 1.0 41754, 5

6000. .0010459 .8608 100000. .00049449 9469 0.0  800.
0277 0001345 6

20372433 24.8226 1.2268 26.98

9967547. 3093 1.221 23.00

0. 008 012 015 .05 .0510 .052 .0525.072%
0.0 89 100 120 121 213

0.0 60 00 00 00 00

75. 7% 00 00 00 00

00. 0. 00 00 00 00

0. 0. 00 00 O 0.

0. 0. 060 00 o 0.

0. 0. 0. 0. O 0.

0. 0. 0. 0. O 0.

0¢ 00 00 00 00 00

0.0 060 00 00 00 00

00 4240 412 4240 4915 3806 8500 379
886 3655 11465 365 120. 365 6591 365
0.0 200. 28. 300. 45. 3000. 45 300
615.  300.

Tt 147 550. 4.0

005 043 7. 6.0

777 00228 .7

48.00 10924 440 0.000

00 50. 137. 197. 397. 597. 65425 50.
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